

Transportation Technical Committee Meeting

Wednesday, February 23, 2022 | 1:00 PM – 2:30 PM AGENDA

Time	ltem	

- 1:00 1. Call to Order / Record of Attendance
- 1:02 2. Approval of January 2022 TTC Meeting Minutes
- 1:03 3. Public Comments
- 1:05 4. TTC Member Comments
- 1:15 5. Chair Report on SRTC Board of Directors Meeting

FOR ACTION

- 1:18 6. 2022-2025 Transportation Improvement Program March Amendment (Kylee
- Jones) 1:20 7. Critical Urban & Rural Freight Corridors (David Fletcher) pg 2
- 1:30 8. Transportation Performance Measures: Safety Targets (Mike Ulrich) pg 10

FOR INFORMATION AND DISCUSSION

- 1:45 9. WSDOT Ramp Meter Presentation (Glenn Wagemann & Jason Lefler, WSDOT) pg 31
- 2:05 10. Coordinated Public Transit Human Services Transportation Plan Update (Jason Lien) pg 47
- 2:15 11. Transportation Discussion Series: Quality of Life (Jason Lien) pg 54
- 2:25 12. Agency Update and Future Information Items (Kylee Jones)
- 2:30 13. Adjournment

AGENDA ITEMS IN BLUE TYPE HAD MEETING PRESENTATIONS AND ALL HAVE BEEN COMBINED INTO THE FOLLOWING DOCUMENT.

CRITICAL URBAN/RURAL FREIGHT CORRIDORS UPDATE

SRTC Transportation Technical Committee Agenda Item 7 | Page 10

February 23, 2022

REQUESTED ACTION

Recommend SRTC Board approval of the proposed list of regional priority freight projects for NHFP funding consideration, as shown in Attachment 1.

Proposed Regional Priority Freight Projects

For National Highway Freight Program (NHFP) Funding Consideration

				NHFP Competitiveness Criteria ¹							
Project Name	Sponsor Agency	Unfunded Amount	Freight Priority Network	Preservation	Safety	Stewardship	Mobility	Freight Cluster Proximity	FGTS Class	Intermodal Connectivity	In Vulnerable Community
Bigelow Gulch/Forker Rd Connector - Project 2 Reconstruct, realign, and widen roadway w/ITS improvements	Spokane County	\$6,290,939	✓								~
Pines Rd/BNSF Grade Separation Grade separation and multi-lane roundabout	Spokane Valley	\$19,300,000	~								~
Wellesley Ave: Freya to Havana Reconstruct roadway	Spokane	\$3,400,000	~								~
Bigelow-Sullivan: Trent Ave/Sullivan Rd Interchange Reconstruct roadway with ITS improvements (<i>PE Only</i>)	Spokane Valley	\$2,950,000	~								
Argonne Rd/I-90 Interchange Bridge Widening Widen roadway w/10' breakdown lane and 6' wide sidewalk (<i>PE Only</i>)	Spokane Valley	\$1,500,000	✓								~

¹NHFP competitiveness criteria, detailed in the table below, is based on WSDOT's NHFP project scoring criteria. The yellow circles show a project's relative competitiveness, with a darker shade indicating a stronger probability that the project will be competitive in the statewide in the NHFP selection process. More information on this criteria and process can be found **HERE**.

SRTC

LIST DEVELOPMENT

1. Identify Candidate Projects

- ✓ Identified regional priority
- ✓ Projects that benefit freight
- ✓ Ability to obligate in 2022– 2025
- ✓ Local agency & committee input

Candidate Freight Projects List

2. Assess Project Competitiveness

Bridge/pavement condition

Serious injury and fatality crashes

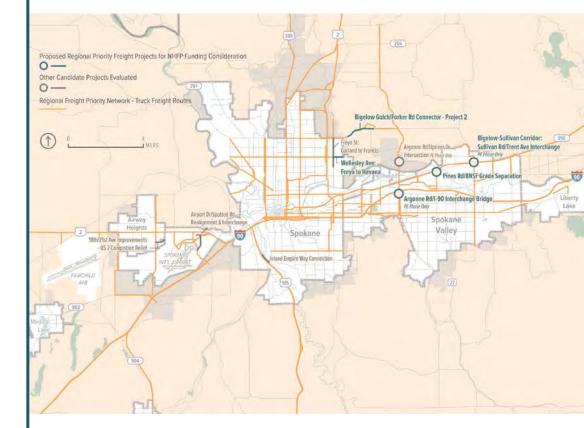
Non-Federal match %

Travel time reliability or delay time

Freight cluster proximity FGTS class

Intermodal connectivity

Location in a vulnerable community


Regional Priority Freight Projects List

Candidate Freight Projects Evaluation For National Highway Freight Program (NHFP) Funding Consideration

Projects sorted by likely NHFP competitiveness					NHFP Competitiveness Criteria ¹							
Project Name	Sponsor Agency	Unfunded Amount	Freight Priority Network	Preservation	Safety	Stewardship	Mobility	Freight Cluster Proximity	FGTS Class	Intermodal Connectivity	In Vulnerable Community	Proposed Regional Priority Freight Proj
Bigelow Gulch/Forker Rd Connector - Project 2 Reconstruct, realign, and widen roadway w/ITS improvements	Spokane County	\$6,290,939	~	0							~	~
Pines Rd/BNSF Grade Separation Grade separation and multi-lane roundabout	Spokane Valley	\$19,300,000	~	0							~	~
Wellesley Ave: Freya to Havana Reconstruct roadway	Spokane	\$3,400,000	~	0							~	~
Bigelow-Sullivan: Trent Ave/Sullivan Rd Interchange Reconstruct roadway with ITS improvements (PE Only)	Spokane Valley	\$2,950,000	~	0								~
Argonne Rd/I-90 Interchange Bridge Widening Widen roadway w/10' breakdown lane and 6' wide sidewalk (PE Only)	Spokane Valley	\$1,500,000	✓								<	✓
Argonne Rd & Upriver Dr Intersection Construct dual lane roundabout (PE Only)	Spokane County	\$300,000	~									
Freya St: Garland to Francis Reconstruct roadway	Spokane	\$18,800,000	~								<	
Inland Empire Way Connection Build new northbound only connection	Spokane	\$6,700,000										
Airport Dr & Spotted Rd Realignment & Interchange Realign roadway and construct grade-separated interchange	Spokane Int'l Airport	\$19,300,000	~									
18st/21st Ave Improvements - US 2 Congestion Relief Improve and extend roadway from US 2 to Flint Rd	Airway Heights	\$4,500,000									~	

INHFP competitiveness criteria, detailed in the table below, is based on WSDOT's NHFP project scoring criteria. The yellow circles show a project's relative competitiveness, with a darker shade indicating a stronger probability that the project will be competitive in the statewide in the NHFP selection process. More information on this criteria and process can be found HERE.

NEXT STEPS

March 10

Request SRTC Board approval of regional priority freight projects list

March 11

Local agency deadline to submit completed project forms to SRTC

March 16

SRTC deadline to submit regional priority freight projects list and completed project forms to WSDOT

Critical Urban/Rural Freight Corridors Update

REQUESTED ACTION

Recommend SRTC Board approval of the proposed list of regional priority freight projects for NHFP funding consideration, as shown in Attachment 1.

				NHFP Competitiveness Criteria ¹							
Project Name	Sponsor Agency	Unfunded Amount	Freight Priority Network	Preservation	Safety	Stewardship	Mobility	Freight Cluster Proximity	FGTS Class	Intermodal Connectivity	In Vulnerable Community
Bigelow Gulch/Forker Rd Connector - Project 2 Reconstruct, realign, and widen roadway w/ITS improvements	Spokane County	\$6,290,939	*								~
Pines Rd/BNSF Grade Separation Grade separation and multi-lane roundabout	Spokane Valley	\$19,300,000	~								~
Wellesley Ave: Freya to Havana Reconstruct roadway	Spokane	\$3,400,000	~								<
Bigelow-Sullivan: Trent Ave/Sullivan Rd Interchange Reconstruct roadway with ITS improvements (PE Only)	Spokane Valley	\$2,950,000	~								
Argonne Rd/I-90 Interchange Bridge Widening Widen roadway w/10' breakdown lane and 6' wide sidewalk (<i>PE Only</i>)	Spokane Valley	\$1,500,000	~								<

¹NHFP competitiveness criteria, detailed in the table below, is based on WSDOT's NHFP project scoring criteria. The yellow circles show a project's relative competitiveness, with a darker shade indicating a stronger probability that the project will be competitive in the statewide in the NHFP selection process. More information on this criteria and process can be found <u>HERE</u>.

QUESTIONS?

SRTC Transportation Technical Committee Agenda Item 7 | Page 10

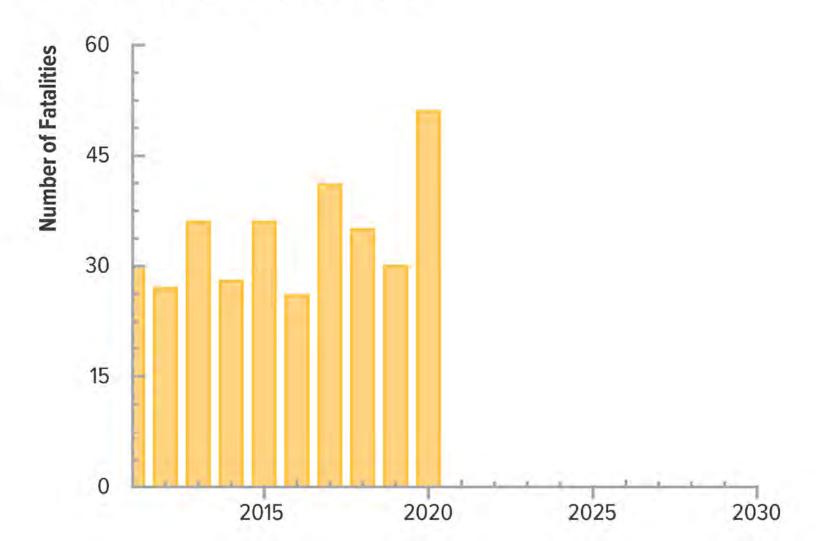
February 23, 2022

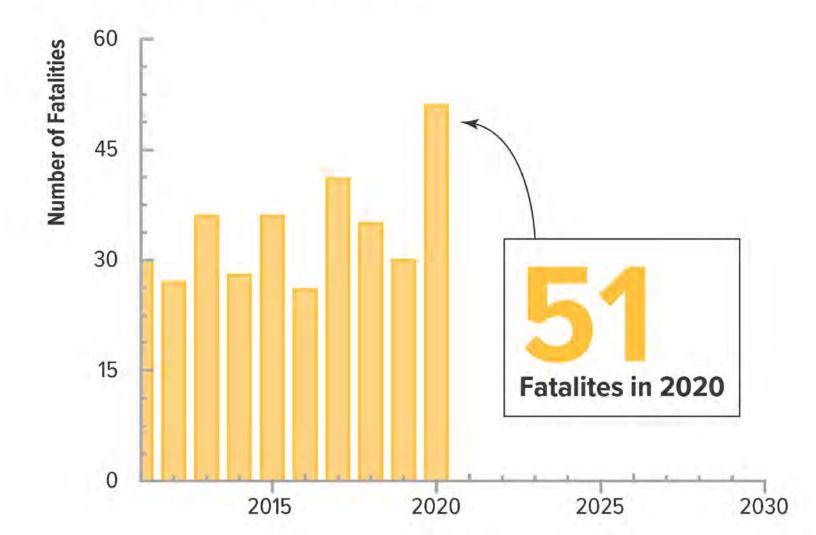
Transportation Performance Management: Safety Targets

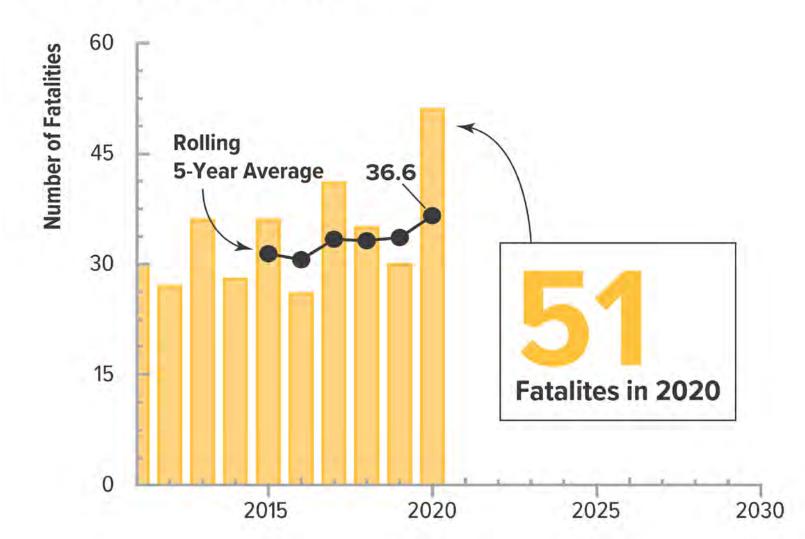
TTC Meeting Agenda Item 8 | Page 15

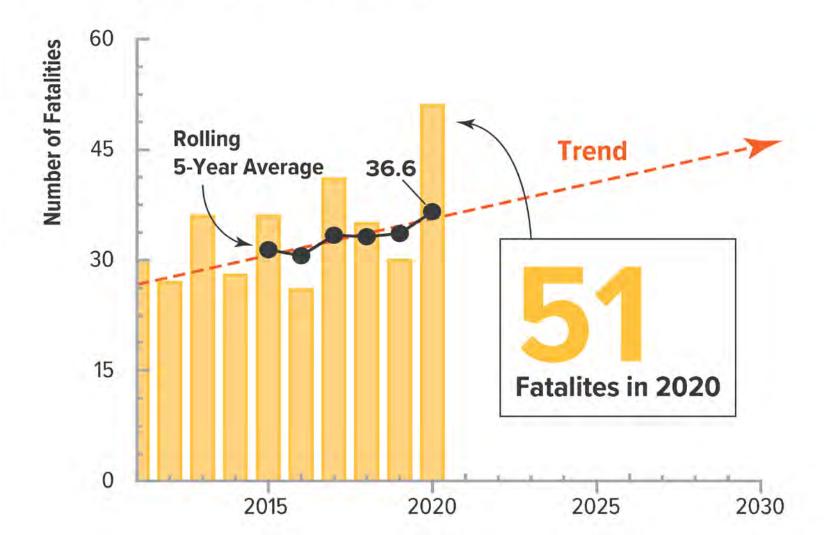
February 23, 2022

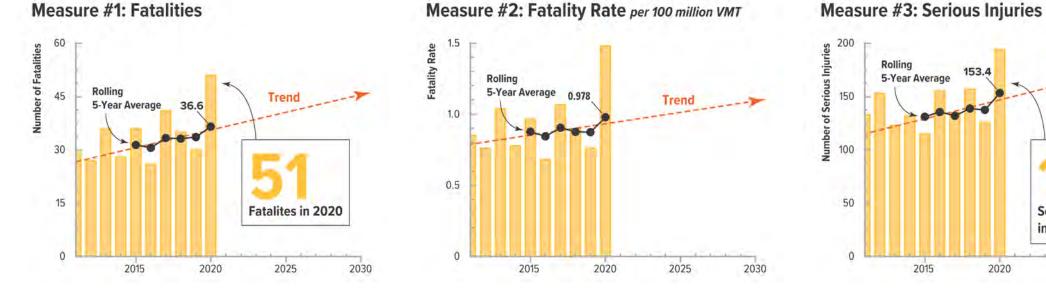
Highway Safety Improvement Program (HSIP)

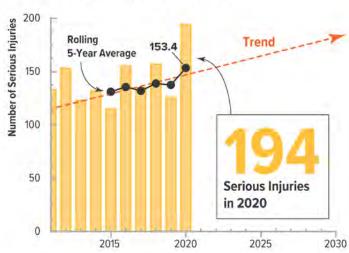

Moving Ahead for Progress in the 21st Century (MAP-21)

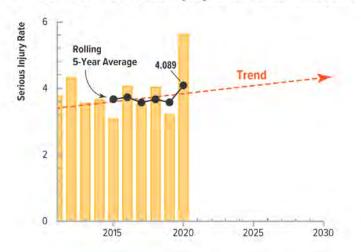

Federal Highway Administration (FHWA)

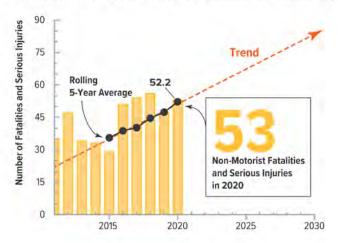

Transportation Performance Management (TPM)


1.Fatalities
2.Fatalities per 100M vehicle miles traveled
3.Serious injuries
4.Serious injuries per 100M vehicle miles traveled
5.Non-motorist fatalities and serious injuries

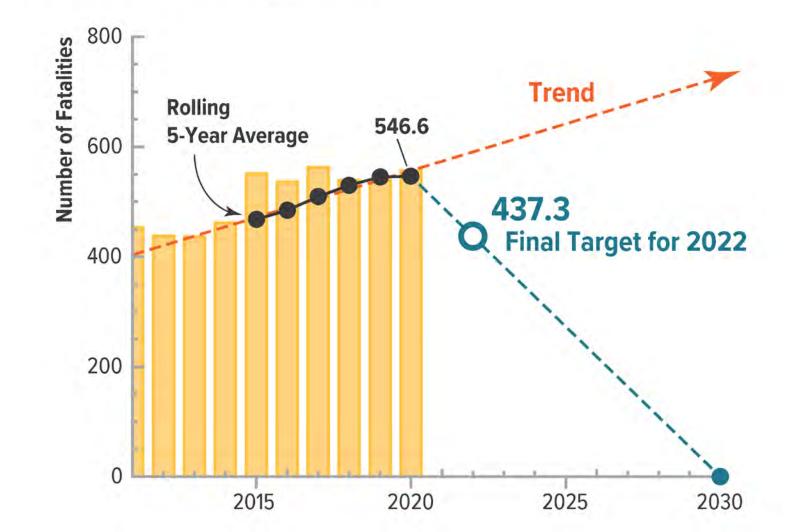








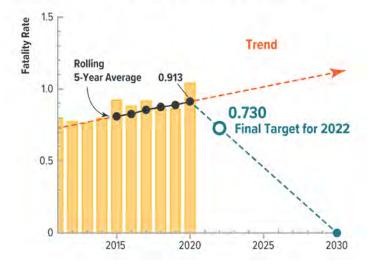
Measure #4: Serious Injury Rate per 100 million VMT

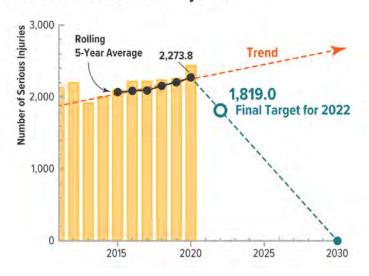


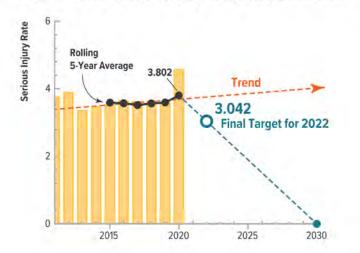
Measure #5: Non-Motorist Fatalities and Serious Injuries

WSDOT Target Zero

Washington - Statewide




Washington - Statewide


Measure #2: Fatality Rate per 100 million VMT

Measure #3: Serious Injuries

Measure #4: Serious Injury Rate per 100 million VMT

Measure #5: Non-Motorist Fatalities and Serious Injuries

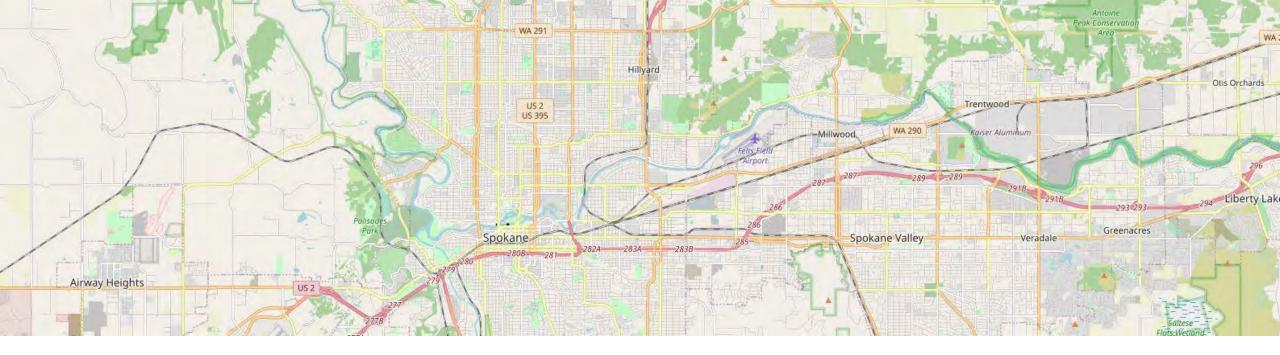
For [the safety] performance measure, the MPOs shall establish a target...

Agree to plan and program projects so that they contribute toward the accomplishment of the WSDOT HSIP target

Commit to a quantifiable HSIP target for the metropolitan planning area

Resolution 19-01

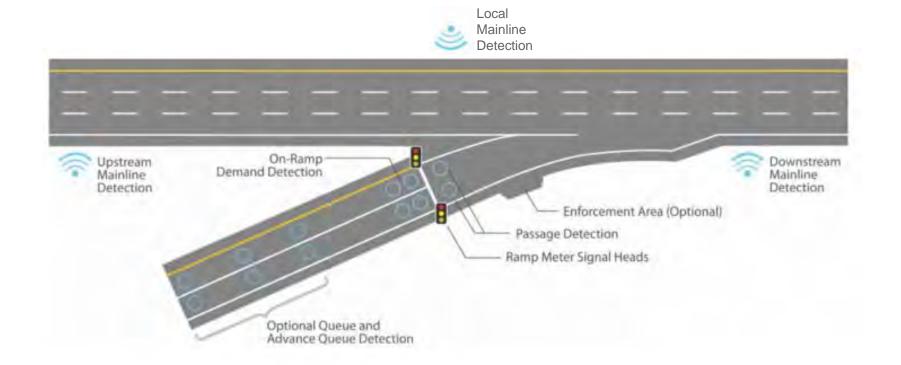
Requested Action


Recommend that the SRTC Board agree to plan and program projects so that they contribute to the accomplishment of WSDOT HSIP targets.

Questions?

Mike Ulrich, AICP Principal Transportation Planner mulrich@srtc.org | 509.343.6384

ADAPTING RAMP METER DEPLOYMENT


Introductions (Team TSMO) MIKE BJORDAHL Transportation Engineer 3 WSDOT Supervisor LIAN ROBERTS Transportation Engineer 2 WSDOT JASON LEFLER Transportation Engineer 2 WSDOT

Traffic Engineer: Glenn Wagemann, P.E.

Ramp meters

Traffic signals installed on freeway on-ramps to control the frequency at which vehicles enter the flow of traffic on the freeway.⁽¹⁾

Why ramp meters?

Non-Metered (Free for all)

Local congestion is caused by influx of ramp volume onto the freeway

Increased rear end collisions

Decrease freeway capacity-accordion affect

Increased congestion and emissions

Metering

Increased safety

Enhanced mobility

Reduced environmental impacts

Higher system efficiency

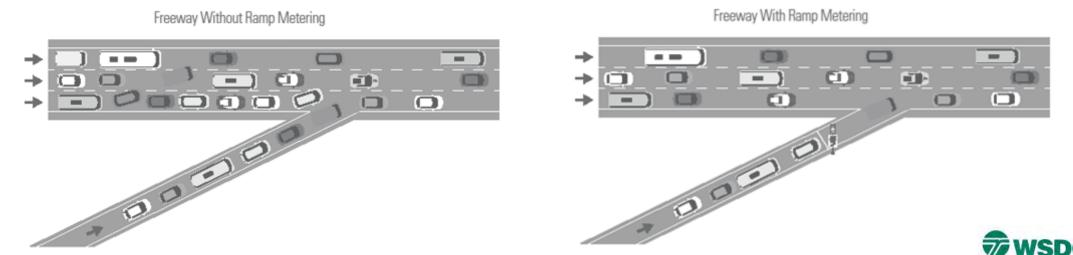
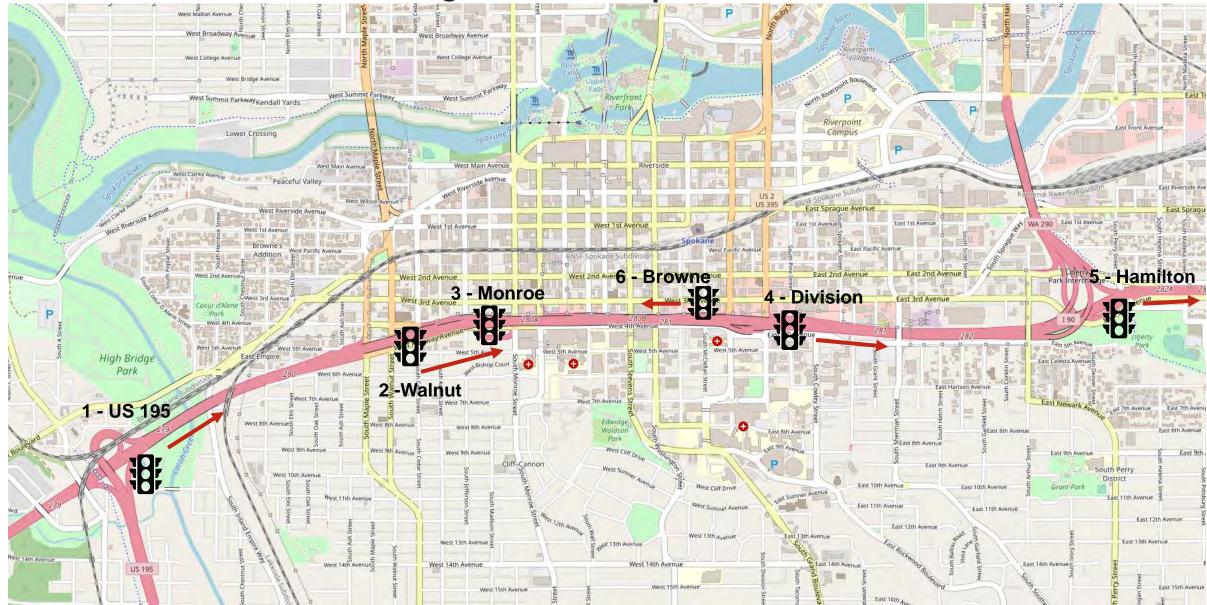



Image Source: FHWA Ramp Metering: A Proven, Cost-Effective Operational Strategy | Washington Department of Transportation

Project area | I-90 EB

Timing strategies

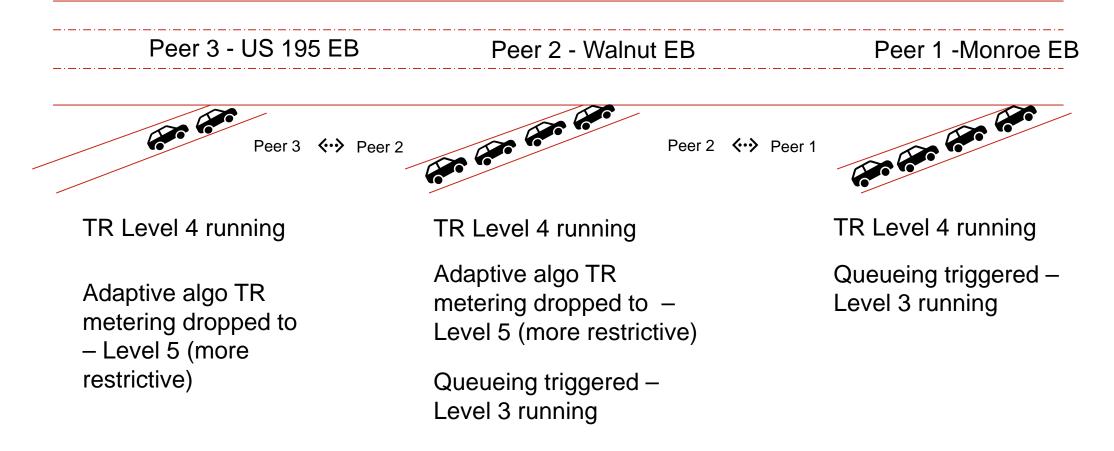
- Local congestion | Local traffic responsive (TR)
 - TOD (time of day) analysis
 - Metering levels
 - Preemption
- **Queuing** | Local and adaptive adjustments
 - Local queuing
 - Network queuing
- Corridor-wide adjustments | Central control
 - Central traffic responsive
 - Action sets

Local Traffic Responsive (TR) Timing

Ramp Meter Operation – Normal Traffic

the the second such as the second	Metering PI	ans						
	Plan 3	Plan 3		Show All Levels				
and the state of t	Level	Rate	Flow	Occupancy	Speed (mph)			
	1	539	0	0.0	57			
	2	529	0	0.0	56			
	3	508	0	0.0	55			
	4	477	0	0.0	54			
	5	446	0	0.0	53			
	6	415	0	0.0	52			
	7	300	0	0.0	40			
	8	150	0	0.0	25			

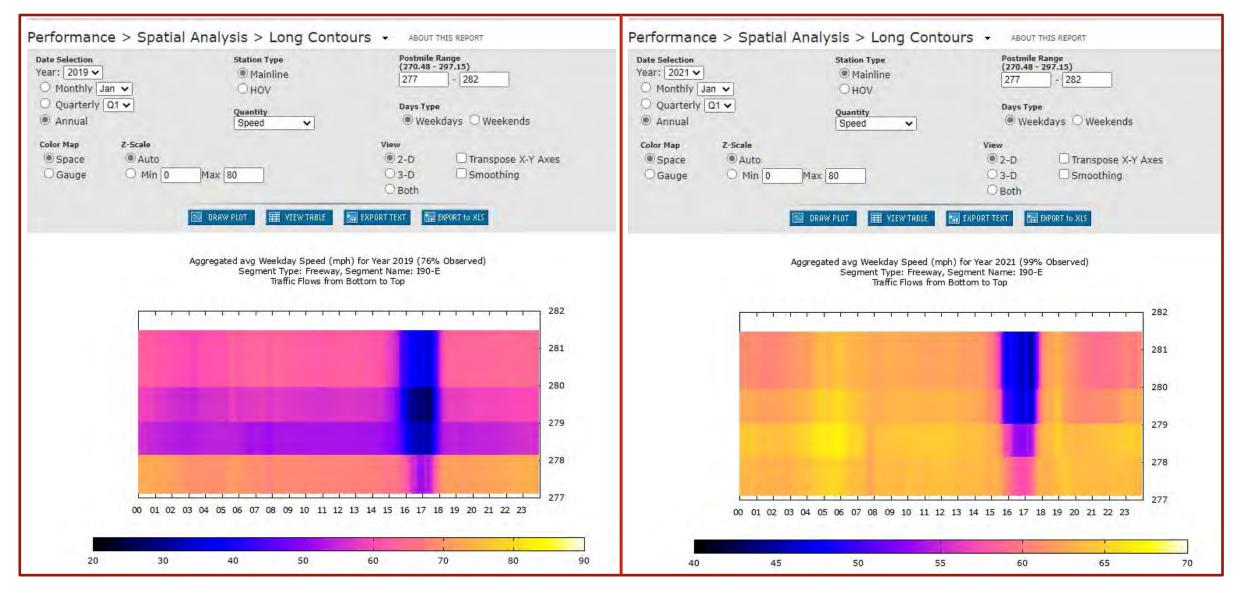
Adaptive metering


Network Balancing Approach – Congested Traffic

	Metering Pla	ans			
the state of the second st	Plan 3		- 0	Show All Levels	
	Level	Rate	Flow	Occupancy	Speed (mph)
a the state of the	1	539	0	0.0	57
	2	529	0	0.0	56
	3	508	0	0.0	55
	4	477	0	0.0	54
	5	446	0	0.0	53
	6	415	0	0.0	52
	7	300	0	0.0	40
	8	150	0	0.0	25

Adaptive Operations | single peer distribution

Freeway Speed – 50 mph (Level 4 on all ramps)

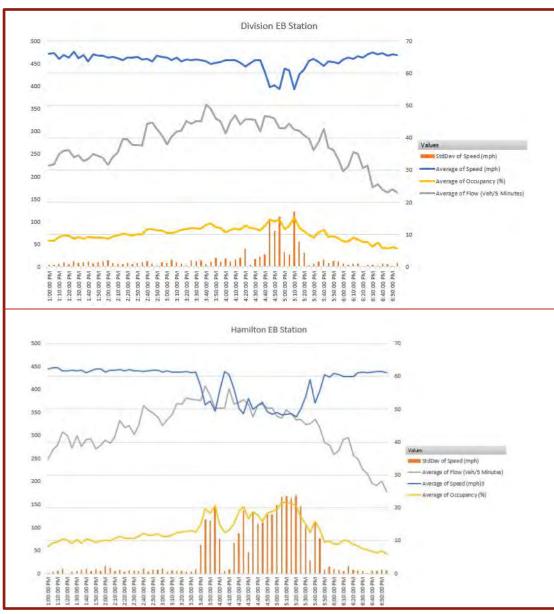

Emergency Operations

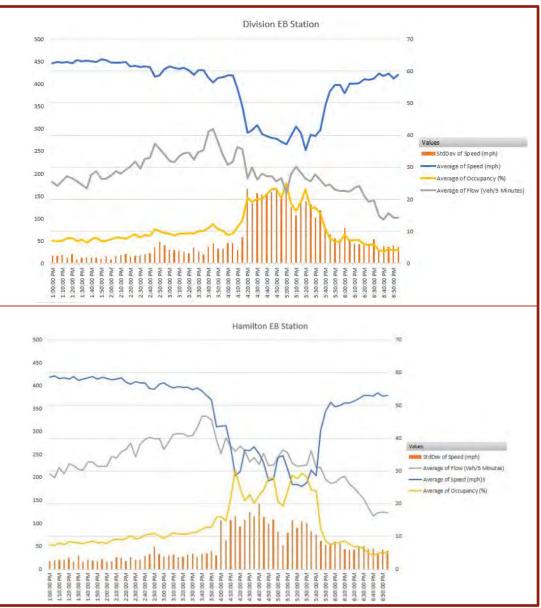
- Meters used to reduce ramp flow during emergencies
- Keeps emergency personnel safer
- Does not allow I-90 to become flooded with additional vehicles
- Allows I-90 to recover quicker, minimizing the overall driver delay
- VMS signs and public media apps are used to divert traffic

What were the results from ramp metering through the downtown corridor?

Corridor Performance 2019 vs 2021

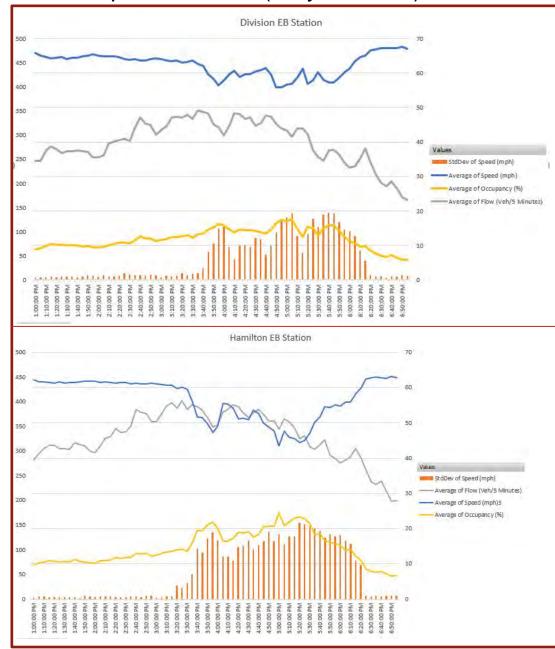
Corridor Performance 2019 vs 2021


Heat Map Data 2019 – Freeway Speeds


Heat Map Data 2021 – Freeway Speeds

4	A	В	C	D	GI	GJ	GK	GL	GM	GN	GO	GP	GQ	GR	GS	GT	GU	GV	GW	GX	GY	GZ	HA	HB	HC	HD	HE	HF	HG	HH	H	HJ	HK	HL	HM
1	Postmile (Abs)	Postmile (WA)																																	
2	281.48	283.79	6000410																																
3	279.99	282.26	6000310	99.0	54.75	53.42	50.53	47.28	44.80	43.19	43.44	45.33	45.40	43.96	43.42	43.86	43.92	44.02	43.43	41.53	41_02	41.92	43.83	45.08	43.72	40 83	40.33	40.78	43.06	45.25	48.28	50.82	53.18	56.46	58.50
4	279.03	281.32	6900110	98.9	61.72	59.89	58.73	57.30	54.93	54.84	54.07	54.97	54.07	52.86	51.79	51.20	52.17	52.22	51.36	49.80	50.51	50.07	52.04	52.39	52.05	51.65	50.48	51.40	52.64	55.89	57.45	59.90	61.50	62.85	63.40
5	278.17	280.45	6901610	98.2	62.03	61.77	60.63	59.82	58.97	58.79	58.83	58.44	57.58	56.54	56.35	54.97	54.13	55.24	55.29	55.34	54.95	54.82	54.64	55.49	56.06	55.68	55.71	56.44	57.62	58.83	60.07	61.32	61.83	62.24	62.41
6	277.13	279.41	6001510	97.5	63.13	63.15	63.12	62.56	62.61	62.08	61.96	62.45	61.53	61.05	60.90	60.92	60.71	60.21	59.31	59.38	59.34	60.01	60.20	59.84	59.85	60.46	60.24	61.45	62.24	62.33	62.48	63.06	63.69	64.00	63.87
7																																			
8																																			

I-90 performance for the first week of November, 2021 (Meters On)




I-90 performance for the first week of January 2022 (Meters Off)

September Data (Freya Closed)

October Data (Freya Open)

Questions?

Coordinated Public Transit-Human Services Transportation Plan

February 23, 2022 TTC Agenda Item 10, Pg 17 Jason Lien, Principal Transportation Planner Spokane Regional Transportation Council

What is the CPT-HSTP?

- Planning effort to:
 - Identify available transportation services
 - Assess needs, gaps, and strategies in Spokane County
 - Benefit people with special transportation needs
 - Low-income
 - Seniors
 - People with disabilities
 - Other people with special needs

Requirements

• Plan update every 4 years

• Needed for State and Federal funding programs

- WSDOT Consolidated Grant Program
- Section 5310 Enhanced Mobility for Seniors and Individuals with Disabilities (Federal Transit Administration)

Process

• Identify service gaps and needs

• Identify strategies / projects to meet unmet needs

• How?

- Partnership with STA
- Coordination with service providers & other stakeholders
- Community outreach + Survey
- Build on 2018 Plan

Project Page

• Srtc.org > Plans & Programs > Coordinated Public Transit...

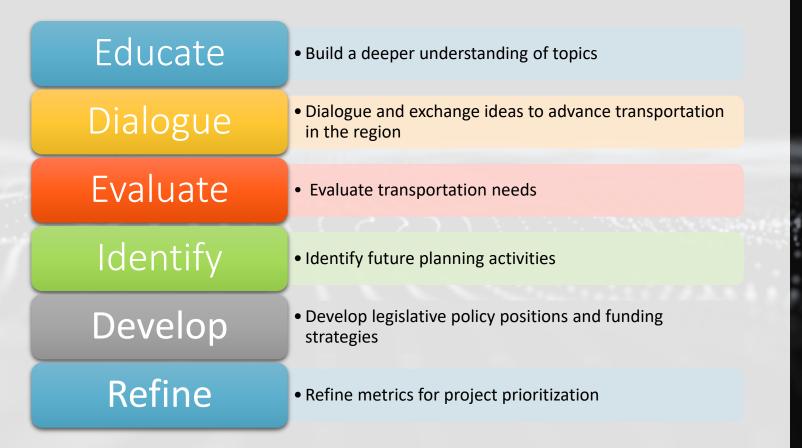
Public transportation / transit is any service that is publicly available for moving passengers to and from their destinations, and may include buses, shared vehicles (vans, cars, scooters, etc.), or trains. Within the Spokane metro area, fixed route bus and paratransit service is provided by Spokane Transit Authority. Outside of the Spokane Transit service area, other providers are responsible for shuttle, dial-a-ride, and other passenger services.

Timeline

Feb	March - July	Aug	Sept	Oct	Nov	Dec
Kick-Off	Outreach & Needs Assessment	Develop Draft Plan	Draft Plan complete (Sept 1)	Draft Review	Final Plan and SRTC Board approval	

Thank You!

Jason Lien jlien@srtc.org 509.343.6370



SRTC 2022 Transportation Discussion Series

Transportation Technical Committee February 23, 2022 Agenda Item 11, Pg. 18 **Presenter: Jason Lien**

Purpose

Timeline

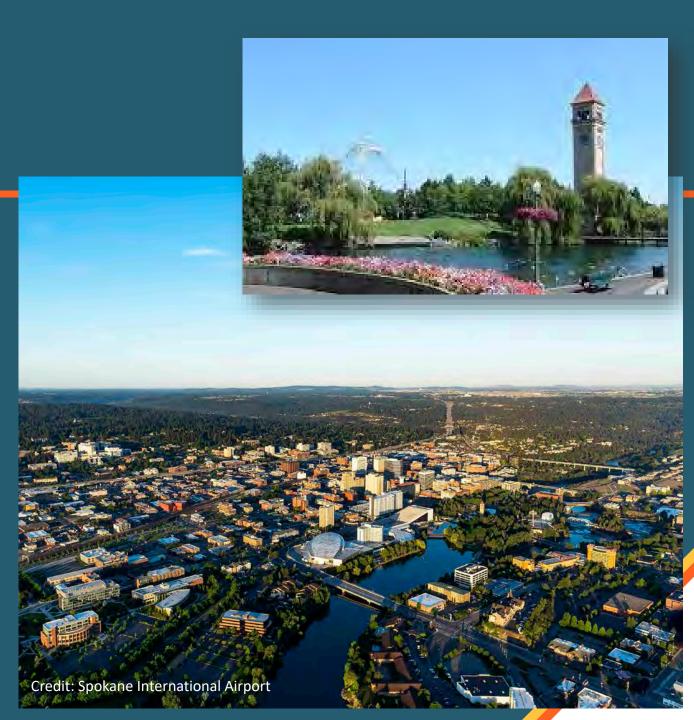
Quality of Life	Stewardship	Funding	System Operation Maintenance	ns and Pr	rioritization Strategy	Approve Priority List
Ма	rch	May	June	Aug		Nov
Feb	April	Sept	VIUL		Oct	Dec
Safety	Equity	-Land Us Transpo	se & ortation	TSMO Workshop	Review Pri	iority List
		Worksho	op			

Quality of Life

• What is this and what does it mean to our region?

• With all our transportation needs, how do we measure success?

Horizon 2045 Guiding Principles


• Overlap (Quality of Life, Safety, Economic Vitality, Equity)

Quality of Life

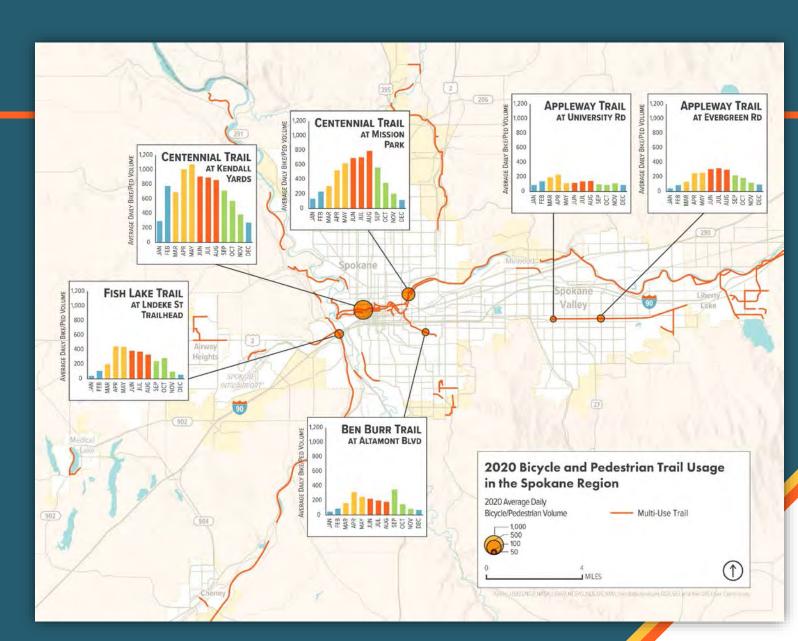
Amenities

- Parks
- Built environment
- Neighborhoods
- Business destinations
- Arts
- Natural environment

Access

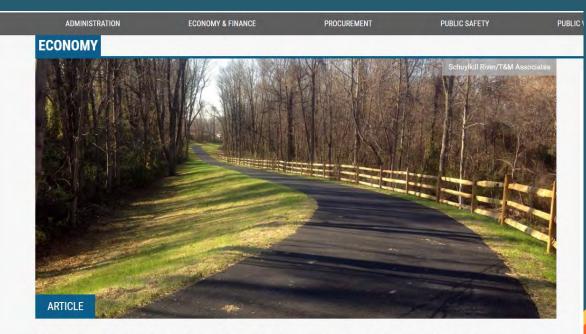
- Transportation system binds region together
 - All modes

Horizon 2045 Quality of Life


- Described in terms of a balanced transportation system
 - Multimodal Transportation choices
 - Safe and convenient multimodal options for everyone

Use Data

• Trail network


• STA ridership

Why is this important?

• Diversity of transportation choice

- Create a system that is complementary
- Focus on connectivity / access
- Public Health
- Equity
- Economic / Cost

Trails, greenways and parks infrastructure projects boost economic activity and help residents live healthier lives

Written by Michael Keating 15th November 2021

User Experience

- Facility type / context
- Sense of place
- Maintenance

How do we get there?

• Priority Networks

- Transit
- Bicycle
- Project / program support
- Complete Streets policies
- Data analysis

Indicators

- Miles of facility type
- Network density
- Level of Traffic Stress (for cycling)
- Proximity to a bus stop
- Transit frequency
- Mode share

Discussion – Through the lens of QoL

- How do we measure success for the projects we are promoting?
- Are there other metrics we should be thinking about?

Thank you!

Jason Lien, Principal Transportation Planner Spokane Regional Transportation Council 421 W Riverside Ave Suite 500 | Spokane WA 99201 (509) 343-6370 | <u>jlien@srtc.org</u> | <u>www.srtc.org</u>